23 February 2017


For example, Dresselhaus contributed to the discovery of fullerenes – very large molecules of carbon that resemble Buckminster Fuller’s geodesic domes. She also predicted the existence of carbon nanotubes – single-atom-thick cylinders of carbon that could be used in everything from stronger materials, ultrastrong cables, and hydrogen storage to advanced electronics, solar cells, and batteries. And she remains a leader in the science of nanoscale carbon structures, which are thousands of times smaller than the diameter of a human hair, exploring their electronic behavior and how they convert heat into electricity. Physics was not an obvious choice for Dresselhaus. She grew up poor in New York City, and enrolled in Hunter College in 1948. She planned to become a teacher, one of the few professional careers open to women at the time. Instead, she took a physics class with Rosalyn Yalow, a future Nobel Prize winner, who encouraged her to study physics. She eventually received a doctorate at University of Chicago, where she was further mentored by Enrico Fermi, also a Nobel Prize winner.

No comments: